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Abstract—Reliable estimation and initialization of Arctic sea-ice
thickness (SIT) through data assimilation (DA) during the summer
melt season were previously hampered by the lack of available ob-
servations owing to limitations in satellite retrieval algorithms. Re-
cently, successful satellite-derived Arctic SIT measurements from
CryoSat-2 (CS2) and advanced microwave scanning radiometer
2 (AMSR2) during the boreal summer have been achieved using
advanced retrieval algorithms. This study compares the impacts of
CS2 and AMSR2 SIT datasets by individually assimilating each
dataset using the ensemble optimal interpolation DA technique
with CICE 5 dynamical sea-ice model in 2019 and 2020. The under-
estimated sea-ice extent in the control simulation without DA dur-
ing summer was effectively corrected in the reanalysis assimilating
AMSR2. However, the degree of correction was less pronounced in
the reanalysis assimilating CS2. A sensitivity experiment confirmed
that the weak correction degree when using CS2 was not due to
its low spatiotemporal resolution, suggesting that the issues may
arise from a systematic negative bias related to ice roughness
over the central Arctic Ocean in CS2. During the summer and
subsequent sea-ice growing seasons, the simulated SIT in the DA
of AMSR2 shows greater similarity with independent reanalysis
and satellite data than that of CS2. Validations against SIT obser-
vations measured by ice mass balance and upward-looking sonar
indicate that the DA of AMSR2 effectively enhances the day-to-day
variability compared with CS2 and control simulations during both
the summer and subsequent winter seasons. This study underscores
the response of the model to assimilating current satellite summer
SIT data and highlights the factors to consider when utilizing these
data.
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I. INTRODUCTION

ARCTIC sea ice has been undergoing rapid and signif-
icant changes due to anthropogenic climate change, as

evidenced by the dramatic decline in summer sea-ice extent
(SIE) (defined as the cumulative area of all grid cells with
sea-ice concentration (SIC) greater than 0.15) and sea-ice thick-
ness (SIT) [1], [2]. As a critical component of the Earth’s
cryosphere, summer sea ice is vital for regulating both regional
and global climate systems [3], influencing atmospheric and
oceanic circulation patterns over the Northern Hemisphere [4],
[5] and affecting ecosystems and human activities [6] in the
Arctic. Consequently, the accurate modeling and prediction of
the summer sea-ice amount are essential for understanding these
transformations and their broader implications.

To precisely predict sea-ice amounts using dynamical models,
data assimilation (DA) techniques have been implemented to se-
cure realistic initial conditions by incorporating satellite-derived
sea-ice observations [7], [8], [9]. SIT, a critical prognostic vari-
able of sea-ice models, shows significant spatial autocorrelation
and is the most reliable predictor, second only to sea-ice volume
itself [10]. SIT anomalies, which exhibit longer persistence
than SIE anomalies [11], provide predictive insights into SIE
anomalies [12], [13]. Thus, the positive impacts of SIT DA on
the simulations are widely recognized for both SIE and SIT [14],
[15], [16].

Until recently, most DA studies incorporating satellite SIT
primarily focused on the boreal winter season because of the
lack of a reliable retrieval technique for remotely sensed SIT
during other seasons, such as the melting season from late May to
September. Observing SIT during boreal summer is complicated
by the heterogeneous surface characteristics of melted sea ice,
which pose challenges to the conventional algorithms designed
for winter conditions [17], [18], [19], [20]. For instance, Till-
ing et al. [19] noted the difficulty in distinguishing measurements
from open water and sea ice from May to September.

In addition to the challenges in initialization due to the absence
of accurate observations, the prediction skill of Arctic sea ice
during the melt season is constrained by a spring predictability
barrier [21], [22], [23], [24], [25]. Specifically, predictions ini-
tialized before spring, particularly in May, exhibit much lower
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accuracy than those initiated on or after this date in both sta-
tistical [26], [27], [28], [29] and dynamical models [12], [30].
Previous research has demonstrated that the preconditioning of
early summer SIT anomalies is crucial for accurately predicting
sea ice in September [27], [31], [32], [33], underscoring the
significance of SIT observations gathered during the melt season
(May–August) for seasonal predictions of Arctic summer sea ice
at a regional level.

Recent developments in sophisticated algorithms have en-
hanced the estimation of summer SIT, facilitating the retrieval
of summer SIT or related variables, such as the sea-ice draft
(i.e., underwater depth of sea ice below sea level; SID) [34],
[35] from satellite measurements. One source of satellite-based
summer SIT data was derived from synthetic aperture interfer-
ometric radar altimeter/CryoSat-2 observations [34], a part of
the year-round Arctic SIT observations during 2011–2022 using
CryoSat-2 radar freeboard correction under summer ice condi-
tions. Another source is retrieved from the advanced microwave
scanning radiometer (AMSR) 2 [35] onboard the global change
observation mission for water (GCOM-W). These data are based
on a method for estimating SID based on spaceborne passive
microwave-measured brightness temperatures.

The quality of satellite-derived SIT has been extensively
assessed using independent in situ observations with higher ac-
curacy. In particular, Beaufort Gyre Exploration Project (BGEP)
mooring data from Woods Hole Oceanographic Institution and
Seasonal Ice Mass Balance Buoy 3 (SIMB3) buoy data from
cryosphere innovation have been widely utilized for the valida-
tion of satellite-retrieved products [19], [36], [37], [38], [39].

When validated against in situ observations, AMSR2 SIT pro-
duces more accurate satellite estimates compared with CryoSat-
2. CryoSat-2 SID, when compared with BGEP SID measure-
ments from June to August during 2013–2018, was found to be
underestimated [34]. In contrast, AMSR2-based SID estimates
demonstrated better agreement with the in situ observations [35].
For intercomparison, after rescaling AMSR2 SID to match the
spatiotemporal resolution of CryoSat-2, the root-mean-square
error (RMSE) was 0.48 m with a bias of −0.19 m. Meanwhile,
CryoSat-2 SID exhibited a higher RMSE of 0.85 m and a bias
of −0.56 m [35].

Recent advancements in summer SIT observations from satel-
lites enable more reliable SIT reanalysis fields of SIT through the
DA of these SIT data into dynamical models, offering promising
prospects for improving Arctic sea-ice predictions during the
melting season. For instance, several studies have explored the
positive impacts of the DA of year-round CryoSat-2 SIT during
summer on seasonal predictions of sea-ice conditions [40], [41],
[42]. Song et al. [42] found that initializing SIT using daily inter-
polated and spatially upsampled fields from biweekly CryoSat-2
SIT data along with adjustments for observational uncertainties
in thick ice regions during the ice-melting season of 2015/16
led to improved predictions of summer ice-edge forecast errors.
Zhang et al. [41] demonstrated that assimilating spatiotem-
porally upsampled CryoSat-2 SIT daily anomalies with a 1°
horizontal resolution from May to August enhanced the accuracy
of local September SIC and SIE predictions from 2011 to 2020.
Min et al. [40] also showed that the daily updates of the SIT

initial conditions through incremental analysis updates for the
CryoSat-2 summer SIT from May to September 2016 improved
the overestimation in the reanalysis produced by the combined
model and satellite thickness [43]. In contrast, while the impact
of SIT from CryoSat-2 has been extensively studied through
assimilation, the effects of AMSR2-estimated SIT data have not
yet been explored. As the two datasets utilize distinct sensors
and retrieval algorithms, providing different SIT estimates and
resolutions in space and time, the influence of each data on the
model via DA may vary.

In this study, the impact of the satellite-derived SIT observa-
tions obtained from CryoSat-2 and AMSR2/GCOM-W during
the melting period was investigated by assimilating them into
the Community Ice CodE version 5.1.2 (CICE5) through the
ensemble optimal interpolation (EnOI) scheme [44], [45], [46].
The reanalyzed sea-ice fields were assessed for both summer
and subsequent winter seasons using independent reanalysis
and in situ observations. The rest of this article is organized
as follows. Section II describes the models and methods used.
Section III evaluates the impact of DA on sea-ice conditions.
Finally, Section IV concludes this article.

II. METHODS

A. Model and Boundary Conditions

This study used the CICE5 sea-ice dynamical model devel-
oped by the Los Alamos National Laboratory [47]. The CICE5
model is a state-of-the-art sea-ice prediction model with com-
plex physical parameterization schemes and serves as the sea-ice
component of the National Center for Atmospheric Research
Community Earth System Model [48]. The CICE5 model clas-
sifies the ice thickness distribution into five categories with each
category comprising seven vertical ice layers and one snow layer
to account for variations in sea-ice temperature and salinity. The
model uses mushy layer thermodynamics for handling thermo-
dynamic processes and elastic-anisotropic–plastic dynamics for
dynamic processes [49], [50]. In addition, it incorporates recent
complex physics parameterization schemes, including those for
melt ponds and pressure ridging [51], [52]. The model covers all
longitudes and latitudes poleward to 89.71°N, operates at a hor-
izontal resolution of approximately 1° on a displaced pole grid
with dimensions of 320 × 384, and employs a time step of 1 h.

The atmospheric boundary forcings for CICE5, including
surface momentum (i.e., zonal and meridional wind stresses)
and surface heat fluxes (i.e., incoming and outgoing longwave
and shortwave radiations), are based on the National Centers for
Environmental Prediction-Department of Energy Reanalysis 2
dataset [53]. In addition, the modeled sea surface temperature
(SST) data are nudged toward the optimal interpolation SST
version 2 from the National Oceanic and Atmospheric Admin-
istration [54] with a restoring timescale of 20 days.

B. DA Scheme

The satellite-derived SIT observations were assimilated
into the CICE5 model using an EnOI scheme with a 1-day
assimilation cycle [46], [55], [56], [57]. The EnOI scheme
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employs a stationary ensemble member to approximate the
background error covariance matrix. This offers a cost-effective
alternative to the ensemble Kalman filter, especially in situa-
tions with limited computational resources [58]. The stationary
ensemble members or background error perturbations for the
EnOI were generated using a methodology similar to that used
to obtain bred vectors [59]. To capture seasonal variations in
the spatial distribution of the perturbations, the background
error covariance matrix for any given day was computed us-
ing the background perturbations from the corresponding day
across the years 1982–2019. Consequently, the background error
covariance matrix exhibits a seasonal cycle, with 38 samples
contributing to its formulation on any given day (i.e., one sample
per year). For further details on the equations and schematics,
refer to the previous study [44]. It is noted that changes from
SIT DA are applied only to grid cells where the SIC exceeds a
conservatively set threshold of 0.15 [14], [15], [16]. This means
that SIT DA does not create additional sea ice in empty grid cells
(i.e., open water).

C. CryoSat-2 and AMSR2 Data for DA

In this study, we used the year-round pan-Arctic CryoSat-2
SIT and the corresponding observation error dataset for DA
during the summer season [34], which we refer to herein as
CS2. Landy et al. [34] applied melting correction to the ice
freeboard during the melt season. The corrected ice freeboard
was then converted to SIT using the hydrostatic assumption
along with model-based snow depth and snow density values.
The observational error averaged during the ice-melting season
of CS2 is 0.41 m [41]. For this study, biweekly CS2 summer
SIT data with 80-km spatial resolution covering the period from
June to August 2019 and from June to July 2020 were obtained
from the British Antarctic Survey webpage.

For the DA, we also utilized AMSR2-based SID dataset [35].
This dataset is estimated through a method for the pan-Arctic
SID during the melt season by empirically relating AMSR2
brightness temperatures to the BGEP upward-looking sonar
(ULS) measured SID. The spatial resolution of the SID esti-
mation is 25 km, with daily temporal resolution covering the
periods from June to August in both 2019 and 2020. AMSR2
SID was converted into SIT using the hydrostatic equation [35,
eq. (13)] with auxiliary data, such as snow/ice densities and snow
depth, which are used in [34]. Given that SID comprises up to
90% of the total sea ice, the observation error of AMSR2 SIT is
set at 0.43 m, matching the maximum observation error value of
0.38 m for AMSR2 SID [35]. The similarity between the maxi-
mum observational error of AMSR2 and the mean observational
error of CS2 suggests that AMSR2 yields a more accurate SIT
estimate. The snow depth and density estimates derived from the
Lagrangian snow evolution scheme SnowModel-LG were used
to convert SIT (SID) to SID (SIT) for both satellite products and
model outputs [60], [61].

D. Data for Evaluation

The climate data record (CDR) of the satellite passive
microwave-based (special sensor for microwave imager and

sounder (SSMIS) daily SIC version 4 was used to validate the
modeled SIE. This dataset is based on a combination of the boot-
strap NASA-Team SIC algorithm. In addition, the pan-Arctic
ice–ocean modeling and assimilation system (PIOMAS) SIT
data were employed for validation [62]. Weekly averaged SIT
product version 2.3 of CS2SMOS, which merges Level-2 pre-
processed CryoSat-2 and Level-3 collated soil moisture ocean
salinity (SMOS) data using an optimal interpolation scheme
from the Alfred Wegener Institute, was also used to validate
the updated SIT field [63]. For evaluation, both the model
outputs and the satellite data were regridded onto a 1° rectilinear
latitude/longitude grid system from the original grid system.

The BGEP ULS ice draft data from moorings and SIMB3
datasets1 were used to validate the reanalysis data from the
DA experiments. The measurement error of BGEP ULS SID
is approximately 0.1 m [64], while that of SIMB3 is around
0.011 m [65]. Both in situ observation datasets exhibit higher
accuracy compared with satellite-based data, with AMSR2 and
CS2 exhibiting observational errors of about 0.43 m [35] and
0.41 m [41], respectively.

The SIMB3 buoys, which include those from Multidisci-
plinary Drifting Observatory for the Study of Arctic Climate
(MOSAiC) and Dartmouth, were deployed. The Dartmouth
buoys and moorings were mainly distributed in the Beaufort
Sea, while those deployed in the Central Arctic Ocean by the
MOSAiC expedition drifted to the Fram Strait along the trans-
polar drift stream (see Fig. S1).

BGEP ULS SID observations from moorings A (75°N,
150°W), B (78°N, 150°W), and D (74°N, 140°W) during 2019–
2020 were used to validate the SID reanalyzed from the DA
experiments. Since 2003, the BGEP moorings in the Beaufort
Sea have continuously monitored the freshwater and heat content
of the Arctic Ocean, including the solid freshwater flux, through
SID observations. BGEP ULS data, measured at 1-s intervals,
were processed into daily averages to assess the daily model SID.

The SIT measurements from the SIMB3 dataset were also
used for validation. The SIMB3 was developed to improve
the monitoring of mass balance with design features that in-
crease reliability and survivability, simplify installation, and
reduce costs. SIMB3 data can be accessed from Cryosphere
Innovation.2 The instruments used were MOSAiC 2019 #1─3,
Dartmouth 2019 #1, and 2020 #1─2 to assess the simulated SIT
during both the summer and winter seasons. The observation
period of each SIMB3 buoy is detailed in Table S1. Given the
deployment conditions of the SIMB3 buoys, which can only
measure SIT up to 2.5 m thick and are restricted to deployment
on flat sea ice in the subgrid, caution is necessary when inter-
preting comparisons with the model outputs averaged over the
grid space. To minimize the systematic differences between the
model outputs, which represent variability over a certain area,
and the point measurements, SIMB3 data from analogous time
frames and regions were integrated and then used to validate the
overall performance of the model. The SIMB3 data were first
processed onto a 1° rectilinear latitude/longitude grid, averaged

1[Online]. Available: https://www.cryosphereinnovation.com/simb3
2[Online]. Available: https://www.cryosphereinnovation.com/data

https://www.cryosphereinnovation.com/simb3
https://www.cryosphereinnovation.com/data


LEE et al.: DATA ASSIMILATION OF SATELLITE-DERIVED ARCTIC SEA-ICE THICKNESS DURING BOREAL SUMMER 11333

TABLE I
OVERVIEW OF EIGHT EXPERIMENTS UTILIZED TO ASSESS THE IMPACT OF

SATELLITE-DERIVED SUMMER SIT DATA

over 15-day intervals, and area averaged within 10° and 2°
domains in the x and y directions, respectively, to assess the
corresponding model simulations.

In addition to reference environmental information at the grid
scale at which the SIMB3 buoys are located, the following
satellite-based datasets were employed: Snow depth obtained
from SnowModel-LG distributed by the National Snow and Ice
Data Center (NSIDC) and SIC from the Ocean and Sea-Ice
Satellite Application Facility of the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT).
NSIDC ice-age data (EASE-grid sea-ice age, version 4) and
brightness temperature at band 31 based on the moderate reso-
lution imaging spectroradiometer/aqua surface reflectance daily
L3 global 0.05° climate modeling grid (MYDCMG v061), were
also used.

E. DA Experiments Design

Table I summarizes the different experiments and compares
the impacts of satellite-derived summer SIT DA across various
experiments with distinct SIT observations. “CTL” is a control
experiment without the DA of summer SIT observations, where
SIT is simulated by CICE5 driven by atmospheric and oceanic
boundary conditions. It is important to note that CryoSat-2
data generally have low spatiotemporal resolutions, featuring
an 80-km horizontal resolution and biweekly (twice per month)
temporal resolution [35], [40]. To overcome these limitations,
previous studies have enhanced the spatiotemporal resolution
of data using methods, such as upsampling using distance-
weighted average mapping or piecewise constant interpolation
for spatial upscaling, and linear interpolation for temporal up-
scaling [40], [41]. The uncertainty of the upscaled CryoSat-2
was set at 0.41 m, consistent with that of raw data, to isolate the
impact of observation density on the DA experimental results.
In this study, two approaches were implemented to assimilate
CryoSat-2. First, in alignment with prior research [40], [41],
an experiment named “CS2up_DA” utilized spatiotemporally
upsampled CryoSat-2 data. In this experiment, CryoSat-2 SIT,

Fig. 1. Time series of monthly SIEs averaged over the Northern Hemisphere
(50°–90°N) of SSMIS_CDR (black solid with triangles), CTL (gray solid),
CS2_DA (blue dashed), CS2up_DA (green dashed), and AMSR2_DA (red
dashed) from (a) June 2019 to May 2020 and (b) June 2020 to May 2021.

upscaled to a daily basis with a 25-km resolution matching that of
AMSR2, was assimilated into the CICE5. Second, the unaltered
CryoSat-2 SIT, which maintains the original biweekly SIT with
80-km spatial resolution referred to as “CS2_DA,” was assim-
ilated. For the DA of AMSR2-based SIT, the corresponding
experiment is designated as “AMSR2_DA.”

The experiments spanned from 1 June 2019 to 31 May 2020
and from 1 June 2020 to 31 May 2021. The sea-ice initial
conditions for each experiment were derived from the sequential
assimilation of winter L4 CryoSat-2 and L3 SMOS SIT data into
CICE5, using the same boundary conditions as this study, from
2011 to 2020 [45]. Although satellite data were not assimilated
beyond September in any of the experiments, the model predic-
tions were kept until the subsequent winter and spring seasons
to evaluate the impact of the summer SIT data on later periods.

III. RESULTS

A. Simulation Quality During the Boreal Summer

Fig. 1 displays the monthly averaged Arctic SIE, which is
defined as the total area of all grid cells with SIC greater than
0.15 across the Northern Hemisphere. SIT DA experiments
have little impact on the SIE simulation during the cold season
because the thickness changes by SIT DA cannot affect new
ice formation (see Section II-B). SIE simulations from June
to August reveal distinct differences between CTL and DA
experiments for both 2019 and 2020. The simulated SIE in
CTL tended to exhibit underestimation from June to October
compared with the satellite-derived observations. Notably, SIE
with CS2_DA shows little deviation from SIE with CTL during
the assimilated periods, indicating that the DA impact of CS2
on SIE is minimal. Conversely, AMSR2_DA demonstrates a
significant improvement over CTL. AMSR2_DA effectively im-
proved the underestimation of SIT in CTL in both the 2019 and
2020 experiments. In September 2020, both the SIEs with CTL
and CS2_DA exhibited an underestimation of −1.1 × 106 km2

compared with the SIE derived from the SSMIS CDR, whereas
the simulated SIE with AMSR2_DA displayed a considerably
reduced underestimation of −0.1 × 106 km2 [see Fig. 1(b)].
Furthermore, CS2up_DA exhibited the lowest SIE for August–
September in both 2019 and 2020, which could be attributed
to the ice roughness-related negative bias in CS2 SIT over
multiyear ice (MYI) regions [35], [40].
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Fig. 2. Spatial distribution of mean SIT from PIOMAS (first column) and the
differences of CTL (second column), CS2_DA (third column), and AMSR2_DA
(fourth column) relative to PIOMAS during the periods of JJA 2019 (upper) and
JJ 2020 (lower). (a) PIOMAS [JJA 2019]. (b) PIOMAS [JJA 2020]. (c) CTL19–
(a). (d) CTL20–(b). (e) CS2_DA19–(a). (f) CS2_DA20–(b). (g) AMSR2_DA19–
(a). (h) AMSR2_DA20–(b).

Our results are not likely to be consistent with those of the
prior study [42], which demonstrated that the assimilation of
upsampled CS2 data improved SIE simulation performance.
However, it should be noted that the improvement using up-
sampled CS2 data in [42] was likely achieved by artificially
amplifying observation errors to mitigate the underestimation
issues of CS2. Because neither the CS2_DA nor CS2up_DA
experiments demonstrated improvements over CTL, this study
will focus solely on the results of the CS2_DA experiment going
forward, rather than considering both experiments.

To examine the regional distribution of the simulated summer
SIT, average SIT values for June–July–August (JJA) 2019 and
June–July (JJ) 2020 were calculated across three experiments
and PIOMAS reanalysis during the two periods (see Fig. 2). The
reason for using different months to represent summer SIT in
2019 and 2020 is that CS2 data are available only up to July 2020.
PIOMAS showed that SIT distributions predominantly exceeded
2.5 m in the western part of the central Arctic Ocean, where MYI
is prevalent, thinning progressively toward the subpolar regions
in both time frames [see Fig. 2(a) and (b)]. In 2019, CTL resulted
in an overestimation of SIT in the western part of the Arctic
Ocean and an underestimation in the eastern part compared with
SIT from PIOMAS [see Fig. 2(c)]. In 2020, CTL overestimated
SIT North of Greenland and underestimated SIT in the Beaufort
Sea [see Fig. 2(d)]. Despite the assimilation of the CryoSat-2
summer SIT data, CS2_DA showed minimal improvement over
CTL simulation during both periods of the experiment [see
Fig. 2(e) and (f)]. In contrast, the DA of AMSR2 SIT effectively
corrected the underestimation (overestimation) of the simulated
SIT in CTL over the eastern Arctic Ocean (North of Green-
land) in 2019 and over the Beaufort Sea (North of Greenland)
in 2020 [see Fig. 2(g) and (h)]. Root-mean-square-difference
analysis was used to quantify the differences between each
model experiment and observations (see Figs. S2 and S3). The
results show that AMSR2_DA led to a reduction in errors across
the Arctic Ocean and demonstrated a statistically significant
improvement over CS2_DA at the 99% confidence level (see
Tables S2 and S3).

Fig. 3. Time series of monthly SITs over the Northern Hemisphere (50°–90°N)
in PIOMAS (gray, solid with triangle), CS2SMOS (black, solid with triangle),
CS2 (navy, solid with x marker), AMSR2 (green, solid with x marker), CTL
(gray, dashed with dot marker), CS2_DA (blue, dashed with dot marker), and
AMSR2_DA (red, dashed with dot marker) (a) from June 2019 to May 2020
and (b) from June 2020 to May 2021. (a) 2019. (b) 2020.

To understand the overall temporal evolution of SIT, the time
series of SIT for the model experiments, the satellite summer SIT
data used for assimilation, PIOMAS reanalysis, and CS2SMOS
satellite data were analyzed (see Fig. 3). The seasonal cycle of
the SIT is clearly illustrated in both reference datasets and model
experiments. CS2 SIT displayed the largest amplitude of the sea-
sonal cycle compared with other references and simulations, as
indicated by the navy line with a marker “x” in Fig. 3. In contrast,
AMSR2 showed a relatively weak melt signal compared with
other products and simulations during the melt season, which is
represented by the green line with a marker “x” in Fig. 3.

The simulation results exhibit a distinct contrast. In Septem-
ber, the SIT with AMSR2_DA was significantly thicker than the
SITs with CTL and CS2_DA, despite AMSR2 SIT not being
assimilated during this month. This difference was primarily
attributed to the thicker SIT in AMSR2_DA during the rapid
ice-melting season (see Fig. 3), which likely contributed to the
improved simulation of SIE (see Fig. 1). During the subsequent
ice-growing season from October to April, the evolution of
the Arctic SIT indicates that the summer SIT DA influences
the simulated SIT over the seasonal timescales. In contrast,
SIE has a relatively short memory and can be quickly aligned
with model climatology by boundary forcing. As the SIT dur-
ing JJA extended into the freezing season (i.e., November to
April), AMSR2_DA simulated thicker ice overall more closely
resembling CS2SMOS and PIOMAS than the other experiments
during both experimental periods. In CTL and CS2_DA, SIT
undergoes excessive reduction, with CS2_DA showing slightly
more underestimation due to its assimilation of CS2 data with
thinner SIT values during summer. Conversely, AMSR2_DA
significantly corrects these underestimations. This may be be-
cause the weaker decreasing rate of SIT in AMSR2 data more
closely resembles PIOMAS compared with the pronounced
seasonal reduction observed in CS2. This suggests that a more
accurate summer SIT supports improved SIT simulations on
seasonal timescales, with its positive impacts extending into
the subsequent freezing season. In other words, the realistic
summer SIT leads to the realistic simulation of SIT on sea-
sonal timescales, with its positive impacts extending into the
subsequent freezing season.
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Fig. 4. Scatter plots of spatiotemporally averaged (a) Dartmouth_2019_#1 and
(b) MOSAiC_2019_#3 SIMB3 SIT (x-axis) and the corresponding SITs with
CTL20 (gray circle), CS2_DA20 (blue circle), and AMSR2_DA20 (red circle)
simulations (y-axis) during June–July 2020. SIMB3 data were used by averaging
over 15-day intervals and area averaging within 10° and 2° domains in the x
and y directions, respectively, to assess the corresponding model simulations.
(a) Dartmouth_2019_#1. (b) Dartmouth_2019_#3

The interpretation of this diagnostic for the assimilated obser-
vations requires caution because both satellite products experi-
ence some grid points with missing values due to algorithmic
failures. SIT with CS2 may be overestimated during the early
growth season due to the exclusion of new thin sea ice in the
marginal ice zone (MIZ) at the end of September. A known
limitation of the summer radar freeboard algorithm is its dif-
ficulty in accurately retrieving thin ice [39]. Conversely, the
Arctic-averaged AMSR2 SIT data may show underestimated
values in early June, resulting from missing points in thick
sea-ice areas where the melt signal is not pronounced and may
be overestimated in late August due to algorithmic limitations
that affect ice drift tracking in the MIZs [35]. However, these
missing points did not impact the DA experiments since they
were excluded from the DA process.

To enhance the validation rigor, the fidelity of the reanal-
ysis fields was verified by comparing it with independent in
situ observations. Initially, the quality of the simulated SIT
was assessed using the available SIMB3 data from June to
July 2020, specifically from the Dartmouth_2019_#1 and MO-
SAiC_2019_#3 buoys (see Fig. 4). Given the limitations related
to spatial resolution in the ability of the model to represent
the variability observed at point measurements, the SIMB3
SIT data were spatiotemporally averaged to assess the re-
sults of the corresponding experiments, as outlined in Section
II-D. The underestimated SITs in both CTL and CS2_DA
against Dartmouth_2019_#1 buoy were effectively corrected
in AMRS2_DA [see Fig. 4(a)]. While CTL and CS2_DA
simulations exhibit negative biases of approximately −0.3 m,
AMSR2_DA simulation demonstrates a significantly better
agreement with the observations, displaying a smaller bias of
approximately −0.1 m. In addition, the RMSE in AMSR2_DA
simulation exhibits a significantly lower value of approximately
50% compared with the other experiments. It is important to
note that the pointwise Dartmouth_2019_#1 buoy is likely an
underestimation of the representative SIT in the model grid
space due to the high brightness temperatures and the pres-
ence of MYI for two or more years since the deployment of
the buoy predominantly characterized the grid (see Fig. S4d).

Fig. 5. Scatter plots of daily averaged SID from BGEP ULS 18a (left column),
18b (middle column), and 18d (right column) and the corresponding SIDs
with CTL (gray circle), CS2_DA (blue circle), and AMSR2_DA (red circle)
simulations (y-axis) during JJA 2019 (upper panel) and 2020 (lower panel).
(a) 18a [JJA 2019]. (b) 18b. (c) 18d. (d) 18a [JJA 2020]. (e) 18b. (f) 18d.

Furthermore, Dartmouth_2019_#1 estimated an SIT of ap-
proximately half that of CS2SMOS, which is approximately
2 m during the ice-growing season (i.e., September–December
2019). Even when considering the potential of underestima-
tion in the Dartmouth_2019_#1 buoy, the improvement seen in
AMSR2_DA appears definite, given that the model outputs are
generally thinner than those of the buoy.

The modeled SIT in both CTL and CS2_DA shows overesti-
mation against the MOSAiC_2019_#3 buoy, with bias values ex-
ceeding 0.75 m. However, this overestimation was significantly
reduced by AMSR2_DA [see Fig. 4(b)]. This is generally con-
sistent with the spatial distribution of the differences between the
experiments and PIOMAS (see Fig. 2). The MOSAiC_2019_#3
buoy was considered to represent a relatively accurate SIT
for its grid cell at the time of deployment. The grid traversed
by this buoy features predominantly young sea ice, typically
two years old or less, and exhibits relatively low brightness
temperatures [66]. The SIT measured by the buoy during winter
(i.e., from November 2019 to January 2020) was similar to that
of CS2SMOS (see Fig. S4c). However, it is important to note
that the estimates from June to July 2020, as measured by the
buoy, may have been somewhat overestimated due to slower SIT
growth related to the ice growth–ice thickness negative feedback
[67], compared with CS2SMOS. Despite this consideration,
AMSR2_DA demonstrated a noticeable improvement over the
other experiments because its model outputs were generally
thicker than those of the buoy. The comparison of simulated
SIT at the model grid point closest to the observation site with
the daily averaged values of the two buoys further supports the
enhancement achieved by AMSR2_DA (see Fig. S5).

The SIT simulations were also assessed using the daily aver-
aged SID obtained from the BGEP ULS (see Fig. 5). To convert
the modeled SIT into an SID, the reverse procedure used to
convert an AMSR2 SID to SIT (refer to Section II-A) was applied
in this study. During JJA 2019, the three experiments showed a
fairly accurate representation of BGEP ULS sites 18a and 18b,
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Fig. 6. Spatial distributions of mean SIT from CS2SMOS (first column) and
difference in SIT between CTL (second column), CS2_DA (third column),
and AMSR2_DA (fourth column) and CS2SMOS during December–February
2019/20 (upper) and 2020/21 (lower). (a) CS2SMOS [DJF 2019]. (b) CS2SMOS
[DJF 2020]. (c) CTL19–(a). (d) CTL20–(b). (e) CS2_DA19–(a). (f) CS2_DA20–
(b). (g) AMSR2_DA19–(a). (h) AMSR2_DA20–(b).

but an underestimation for site 18d. The simulated SIDs from
the three experiments at the BGEP site are almost the same [see
Fig. 5(a)–(c)]. Conversely, in the summer of 2020, AMSR2_DA
effectively reduced the RMSEs and negative biases of SID in
CTL and CS2_DA at sites a and d near the coastline [see Fig. 5(d)
and (f)]. At site 18b, as the sea ice thins, AMSR2_DA showed
greater similarity to the observations compared with the others
during JJA 2020 [see Fig. 5(e)].

However, during JJA 2020, AMSR2_DA did not adequately
capture the observed decline in sea ice because the SID estimated
from AMSR2 did not sufficiently capture the decline observed
in the BGEP ULS (see Fig. S7), unlike in 2019 (see Fig. S6).

Conversely, CS2_DA generally depicted thinner sea ice than
the observations (see Fig. 5), with CS2 SIT data indicating the
overall thicker sea ice and a weaker melting trend than that of
the BGEP_ULS (see Figs. S6 and S7). This might indicate that
the information concerning CS2 was not adequately reflected in
CS2_DA.

B. Simulation Quality During the Subsequent Growing Season

The summer SIT can significantly influence the simulation
of sea-ice conditions during the subsequent ice-growing season.
For example, thinner sea ice enhances heat transfer from the
warmer bottom to the colder surface layer, accelerating sea-ice
growth during the growing season [68]. This phenomenon is
known as the negative feedback between ice thickness and ice
growth [69]. This suggests that the underestimation of SIT in
CTL and CS2_DA can lead to amplified variations in sea-ice
conditions. This section explores how summer SIT DA impacts
the simulation results during the freezing season.

Fig. 6 displays the simulated SIT during the subsequent boreal
winter season following the SIT DA for the experiments con-
ducted in 2019 and 2020 [December–January–February (DJF)
2019/20 for 2019 experiments and DJF 2020/21 for 2020 exper-
iments]. The differences in SIT between CS2SMOS and each
experiment reveal that the underestimations in SIT for CTL
and CS2_DA are primarily located in the central Arctic Ocean

Fig. 7. Scatter plots of spatiotemporally averaged SITs from (a) Dart-
mouth_2019_1, (b) MOSAiC_2019_1–3, and (c) Dartmouth_2020_1–2 SIMB3
(x-axis) and the corresponding SITs with CTL (gray circle), CS2_DA (blue
circle), and AMSR2_DA (red circle) simulations (y-axis) during the periods of
December–February (a) and (b) 2019/20 and (c) 2020/21. SIMB3 data were
used by averaging over 15-day intervals and area averaging within 10° and 2°
domains in the x and y directions, respectively, to assess the corresponding model
simulations. (a) Dartmouth_2019_#1 [19]. (b) MOSAiC_2019_#1–3 [19].
(c) Dartmouth_2020_#1–2 [20].

during both experimental periods [see Fig. 6(c)–(f)]. These un-
derestimations for CTL and CS2_DA are significantly reduced
for AMSR2_DA, although some overestimations remain for the
Canadian Archipelago, Barents Sea, and Pacific sectors [see
Fig. 6(g) and (h)]. Using PIOMAS as a reference, the results
show that AMSR2_DA effectively addresses the underestimated
SIT in CTL and CS2_DA (see Fig. S8). The experimental
differences in winter SIT are most pronounced near the central
Arctic Ocean.

The reason AMSR2_DA outperforms CS2_DA in SIE and
SIT predictions is its ability to produce more accurate SIT reanal-
ysis. CS2 data, which measure ice freeboard height using a radar
altimeter, exhibit higher uncertainties in thick ice regions with
significant surface roughness caused by ice deformation, such as
ridging [34]. In contrast, AMSR2 data, which estimate ice draft
using passive microwave sensors, avoid these issues and achieve
higher observational accuracy in thick sea-ice regions. This ad-
vantage is reflected in the DA experiments, where AMSR2_DA
simulates a more reliable SIT reanalysis compared with other
experiments, resulting in superior prediction performance. Thus,
the improvement in AMSR2_DA is attributed to the systematic
difference between two satellite data.

From December 2019 to January and February 2020, all
experiments produced simulations of thicker SIT than the ob-
served SIT by Dartmouth_2019_#1, which was less than 1.4 m
[see Fig. 7(a)]. In comparison with the other experiments,
AMSR2_DA most accurately represented observations in thin
sea-ice conditions. When the observed Dartmouth_2019_#1 SIT
reached 1.5 m or greater, all the simulated SITs exhibited a
sudden drop, resulting in values relatively similar to the ob-
servations. This phenomenon is likely due to abrupt regional
gradients in the simulated SIT along the southward drift path of
the buoy, as indicated by a dipole pattern of differences between
the simulations and CS2SMOS near 140°–130°W and 75°–80°N
[see Fig. 6(c), (e), and (g)]. The RMSE and bias were also larger,
with AMSR2_DA having the smallest, followed by CS2_DA
and CTL (see Table II). In the trajectories of the MOSAiC
buoys (MOSAiC_2019_#1–3 in Table II), the simulated SIT
in AMSR2_DA was consistently thicker than the SITs in CTL
and CS2_DA [see Fig. 7(b)], with AMSR2_DA showing a 26%
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TABLE II
RMSES AND BIASES BETWEEN THE SIMB3 SIT AND SIT WITH EACH

SIMULATION DURING D(0)JF(+1) SEASON FOR THE YEARS OF 2020
(DARTMOUTH_2019_#1 AND MOSAIC_2019_#1–3) AND 2021

(DARTMOUTH_2020_#1–2)

lower RMSE and a 94% lower bias, respectively (see Table II).
Given that the MOSAiC buoys provided a relatively accurate
representation of the grid-scale satellite SIT during winter [65],
AMSR2_DA appeared to offer a more realistic SIT simulation
(see Figs. S4a–c).

Regarding the Dartmouth_2020_#1 and Dartmouth_2020_#2
buoys, which recorded a wide range of SIT from 1.05 to 2.24 m, it
was generally observed that the modeled SIT lies between thin-
ner Dartmouth_2020_#1 and the thicker Dartmouth_2020_#2
[see Fig. 7(c)]. The model experiments exhibit growth similar to
those observed by Dartmouth_2020_#1 but generally overesti-
mate SIT. Given that Dartmouth_2020_#1 recorded an SIT com-
parable with satellite-derived grid-scale SIT (see Fig. S4e), it can
be inferred that CS2_DA provided the most accurate simulation
of SIT in the region where Dartmouth_2020_#1 was deployed,
exhibiting minimum RMSE and bias (see Table II). Conversely,
Dartmouth_2020_#2 recorded thick sea ice exceeding 2 m with
only slight temporal changes. In comparison, CS2_DA and CTL
exhibit growing SIT ranging from 1.1 to 1.6 m, and AMSR2
ranges from 1.2 to 1.8 m. AMSR2_DA closely aligns with Dart-
mouth_2020_#2; however, since this buoy recorded SIT that is
thicker compared with CS2SMOS (see Fig. S4f), interpretation
must be approached with caution. Conversely, in the comparative
analysis of the six buoys averaged over the day, AMSR2_DA
generally showed improved quality compared with the other
experiments (see Fig. S9).

The quality evaluation of the experiments using the BGEP
ULS SID data is explored further (see Fig. 8). During DJF
2019, while AMSR2_DA showed some improvement in bias
at sites 18a and 18d compared with the other experiments,
the differences among the experiments were not particularly
significant [see Fig. 8(a) and (c)]. At site 18b, unlike sites 18a
and 18b, AMSR2_DA exhibits a narrower range of SIT than the
other experiments, indicating slower SIT growth [see Fig. 8(b)].
This site had the thickest SIT in AMSR2_DA compared with the
SITs in CTL and CS2_DA during JJA 2019 [see Fig. 5(b)]. In-
terestingly, the significant underestimation in CTL and CS2_DA

Fig. 8. Scatter plots of daily averaged SID observed by BGEP ULS 18a (left
column), 18b (middle column), and 18d (right column) and the corresponding
SID with CTL (gray circle), CS2_DA (blue circle), and AMSR2_DA (red circle)
simulations (y-axis) during D(0)JF(+1) 2019 (upper panel) and 2020 (lower
panel). (a) 18a [DJF 2019]. (b) 18b. (c) 18d. (d) 18a [DJF 2020]. (e) 18b.
(f) 18d.

during JJA 2020 at sites 18a and 18d and the enhancement
observed in AMSR2 [see Fig. 5(d) and (f)] did not continue into
the DJF season; instead, the bias was reversed [see Fig. 8(d) and
(f)]. At sites 18a and 18b, AMSR2_DA exhibits reduced RMSE
and bias compared with the other experiments [see Fig. 8(d)
and (e)], whereas at site 18d, there is little difference observed.
Notably, at site 18b, the smallest difference in bias and RMSE
between experiments was observed in JJA 2020 [see Fig. 5(e)],
whereas the largest difference occurs in DJF 2020 [see Fig. 8(e)].
Given the strong high-pressure conditions that typically result in
prevailing windy conditions over the Beaufort Sea (i.e., Beau-
fort High [70]), it is plausible that the largest difference can
be attributed to the drift of sea ice from other regions. This
suggests that, although the enhancement of simulated summer
SIT through assimilation yields positive effects, the effects vary
considerably across regions within seasonal timescales.

IV. SUMMARY AND DISCUSSION

Recent advancements in satellite-derived summer SIT prod-
ucts offer opportunities for creating more reliable reanalysis
data through DA and exploring their impacts on sea-ice pre-
dictions over seasonal timescales. This study conducted DA
experiments by assimilating summer SIT retrieved from CS2
[34] and AMSR2 [35] during JJA in 2019 and 2020. These
experiments, which incorporated two datasets, yielded distinct
results both concurrently and over seasonal timescales. During
the summer season, the simulated SIEs in CTL and CS2_DA
were underestimated compared with the SSMIS SIE with a
generally thin SIT, particularly in the eastern Arctic Ocean. The
DA experiment using spatiotemporally upscaled CS2 exhibited
biases similar to or more significant than those observed in
CS2_DA. In contrast, the DA of AMSR2 SIT corrected these
errors and produced a realistic SIE and SIT reanalysis, which
was validated with the SSMIS SIE and PIOMAS SIT data
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during the melt season. Further evaluation of the SIT reanalysis
using the SIMB3 buoys and BGEP ULS moorings showed that
AMSR2_DA improved the overall accuracy and day-to-day
variation of the simulated SIT compared with CS2_DA and
CTL. The changes in the summer SIT simulations influenced
SIT evolution on the seasonal timescale. The assimilation of
AMSR2 data resulted in thicker sea ice during JJA, which was
sustained during the subsequent growth season, thus offsetting
the underestimation in CTL and CS2_DA and achieving a more
realistic reanalysis.

The significant difference in how the DA of the two satellite-
derived summer SIT datasets updates the model background
field carries crucial implications. The systematic underestima-
tion in CS2 over the central Arctic Ocean can intensify the un-
derestimation in CTL. Therefore, this aspect must be considered
when using CS2 to initialize numerical models and/or recon-
struct historical data through DA. For instance, Song et al. [71]
demonstrated that assimilating CryoSat-2 SIT data during sum-
mer could effectively reduce forecast errors in the ice-edge
regions during the melt season by artificially inflating the ob-
servational errors in thick ice regions with large negative biases.
This suggests that, although CS2 exhibits a significant negative
systematic error over the central Arctic Ocean, its observations
in the MIZs positively influence the predictions.

Assimilating AMSR2 SIT improves the background state
more effectively than CS2 SIT due to AMSR2s less negative
bias and higher accuracy. This accuracy is derived from AMSR2
estimating SIT from SID, which represents about 90% of SIT,
while CS2 uses freeboard, which accounts for only 10% [35],
[72]. The smaller magnitude of freeboard introduces greater
uncertainty in SIT estimates. By assimilating AMSR2 SIT,
sea-ice condition predictions improve, with benefits lasting at
least until September.

Although the summer SIT data from AMSR2 exhibit rela-
tively higher quality than those from CS2, as validated against
independent BGEP ULS and buoy measurements [35], the Arc-
tic basin-scale distribution of the two products has not been ex-
amined. For instance, AMSR2-derived SIT is generally thicker
than that from CS2, except in the Barents–Kara Seas during JJA
2019 and JJ 2020, where AMSR2 reports substantially thinner
SIT in CS2 (see Fig. S10).

Both AMSR2 and CS2 SIT datasets require further refine-
ment. AMSR2 SID is based on the correlation between the
brightness temperature from AMSR2 and SID measured by
BGEP ULS during the melt season. To define the melt period
SID, the SID at the melt-onset date (Don) must be detected, em-
ploying a procedure heavily reliant on assumptions derived from
the algorithm used to estimate winter ice freeboard from passive
microwave satellite measurements [35], [73]. Landy et al. [34]
derived summer SIT using CryoSat-2 by applying a melting
correction to the ice freeboard during the melt season. How-
ever, the accuracy of radar altimetry is compromised by the
presence of surface meltwater and the corresponding percolated
waters within a sea-ice system, which obstructs the detection
of the snow–ice interface. Although satellite-based summer
SIT estimates have considerable scope for enhancement, this
study demonstrates that assimilating accurate SIT significantly

improves the simulation performance of sea-ice conditions on
seasonal timescales.

Similar to the findings from several studies that assimilated
SMOS SITs in winter, where only thin sea ice of high accuracy
is employed [7], [14], [43], DA using summer SIT with robust
quality is likely to enhance prediction performance. Given the
reported positive impacts of CS2 DA on the simulation and pre-
diction effectiveness in regions with thin sea ice [41], [71], CS2
SIT over MIZs may exhibit higher accuracy. This indicates that
CS2 and AMSR2 could improve sea-ice prediction performance
when their regional advantages are selectively utilized, similar to
the way complementary features are incorporated during the DA
of winter CryoSat-2 and SMOS [14], [43], [45]. Future studies
aim to explore the effects of assimilating both products, taking
into account the regional quality of observations.
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